Absolute Continuity of Solutions to Reaction-Diffusion Equations with Multiplicative Noise

نویسندگان

چکیده

Abstract We prove absolute continuity of the law solution, evaluated at fixed points in time and space, to a parabolic dissipative stochastic PDE on L 2 ( G ), where is an open bounded domain $\mathbb {R}^{d}$ ℝ d with smooth boundary. The equation driven by multiplicative Wiener noise nonlinear drift term superposition operator associated real function that assumed be monotone, locally Lipschitz continuous, growing not faster than polynomial. proof, which uses arguments Malliavin calculus, crucially relies well-posedness theory mild sense for evolution equations Banach spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations.

We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relat...

متن کامل

Averaging Principle for Systems of Reaction-Diffusion Equations with Polynomial Nonlinearities Perturbed by Multiplicative Noise

We prove the validity of an averaging principle for a class of systems of slow-fast reaction-diffusion equations with the reaction terms in both equations having polynomial growth, perturbed by a noise of multiplicative type. The models we have in mind are the stochastic Fitzhugh– Nagumo equation arising in neurophysiology and the Ginzburg–Landau equation arising in statistical mechanics.

متن کامل

Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise∗

We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces .

متن کامل

Well-posedness and Ergodicity for Stochastic Reaction-diffusion Equations with Multiplicative Poisson Noise

We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces.

متن کامل

Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise

We compare Wiener chaos and stochastic collocation methods for linear advectionreaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic colloca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2021

ISSN: ['1572-929X', '0926-2601']

DOI: https://doi.org/10.1007/s11118-021-09914-3